Forcing Relations for Homoclinic Orbits of the Smale Horseshoe Map

نویسنده

  • Pieter Collins
چکیده

An important problem in the dynamics of surface homeomorphisms is determining the forcing relation between orbits. The forcing relation between periodic orbits can be computed using existing algorithms. Here we consider forcing relations between homoclinic orbits. We outline a general procedure for computing the forcing relation, and apply this to compute the equivalence and forcing relations for homoclinic orbits of the Smale horseshoe map. 2000 Mathematics Subject Classification: 37E30; 37C27; 37B10; 37E25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 3 Forcing relations for homoclinic and periodic orbits of the Smale horseshoe map ∗

An important problem in the dynamics of surface homeomorphisms is determining the forcing relation between orbits. The forcing relation between periodic orbits can be computed using standard algorithms, though this does not give much information on the structure of the forcing relation. Here we consider forcing relations between homoclinic orbits, and their relationships with periodic orbits. W...

متن کامل

Order of Appearance of Homoclinic Points for the Hénon Map

For the areaand orientation-preserving Hénon map,1) we previously derived a generalized dynamical ordering of the symmetric periodic orbits appearing through saddle-node bifurcations.2) The procedure consists of, first, fixing the homoclinic tangency of the stable and unstable manifolds of a saddle fixed point and, then, deriving dynamical order relations for the symmetric periodic orbits assoc...

متن کامل

Homoclinic Bifurcations for the H

Chaotic dynamics can be eeectively studied by continuation from an anti-integrable limit. We use this limit to assign global symbols to orbits and use continuation from the limit to study their bifurcations. We nd a bound on the parameter range for which the H enon map exhibits a complete binary horseshoe as well as a subshift of nite type, and study these numerically. We classify homoclinic bi...

متن کامل

Homoclinic Bifurcations for the H Enon Map

Chaotic dynamics can be eeectively studied by continuation from an anti-integrable limit. We use this limit to assign global symbols to orbits and use continuation from the limit to study their bifurcations. We nd a bound on the parameter range for which the H enon map exhibits a complete binary horseshoe as well as a subshift of nite type. We classify homoclinic bifurcations, and study those f...

متن کامل

Braid Forcing and Star-shaped Train Tracks

Global results are proved about the way in which Boyland’s forcing partial order organizes a set of braid types: those of periodic orbits of Smale’s horseshoe map for which the associated train track is a star. This is a special case of a conjecture introduced in [dCHb], which claims that forcing organizes all horseshoe braid types into linearly ordered families which are, in turn, parameterize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2005